Putting the brakes on snake venom evolution: the unique molecular evolutionary patterns of Aipysurus eydouxii (Marbled sea snake) phospholipase A2 toxins.

نویسندگان

  • Min Li
  • Bryan G Fry
  • R Manjunatha Kini
چکیده

Accelerated evolution of toxins is a unique feature of venoms, with the toxins evolving via the birth-and-death mode of molecular evolution. The venoms of sea snakes, however, are remarkably simple in comparison to those of land snakes, which contain highly complex venoms. Aipysurus eydouxii (Marbled sea snake) is a particularly unique sea snake, feeding exclusively upon fish eggs. Secondary to this ecological change, the fangs have been lost and the venom glands greatly atrophied. We recently showed that the only neurotoxin (a three-finger toxin) gene found in the sea snake A. eydouxii has a dinucleotide deletion, resulting in the loss of neurotoxic activity. During these studies, we isolated and identified a number of cDNA clones encoding isozymes of phospholipase A(2) (PLA(2)) toxins from its venom gland. Sixteen unique PLA(2) clones were sequenced from the cDNA library and TA cloning of reverse transcription-polymerase chain reaction products. Phylogenetic analysis of these clones revealed that less diversification of the PLA(2) toxins has occurred in the A. eydouxii venom gland in comparison to equivalent terrestrial and other marine snakes. As there is no longer a positive selection pressure acting upon the venom, mutations have accumulated in the toxin-coding regions that would have otherwise had a deleterious effect upon the ability to use the venom for prey capture. Such mutations include substitutions of highly conserved residues; in one clone, the active site His(48) is replaced by Arg, and in two other clones, highly conserved cysteine residues are replaced. These mutations significantly affect the functional and structural properties of these PLA(2) enzymes, respectively. Thus, in A. eydouxii, the loss of the main neurotoxin is accompanied by a much slower rate of molecular evolution of the PLA(2) toxins as a consequence of the snake's shift in ecological niche. This is the first case of decelerated evolution of toxins in snake venom.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Danger in the reef: Proteome, toxicity, and neutralization of the venom of the olive sea snake, Aipysurus laevis.

Four specimens of the olive sea snake, Aipysurus laevis, were collected off the coast of Western Australia, and the venom proteome was characterized and quantitatively estimated by RP-HPLC, SDS-PAGE, and MALDI-TOF-TOF analyses. A. laevis venom is remarkably simple and consists of phospholipases A2 (71.2%), three-finger toxins (3FTx; 25.3%), cysteine-rich secretory proteins (CRISP; 2.5%), and tr...

متن کامل

Danger in the reef proteome , toxicity , and neutralization of the venom of the olive sea snake ,

41 Four specimens of the olive sea snake, Aipysurus laevis, were collected off the 42 coast of Western Australia, and the venom proteome was characterized and 43 quantitatively estimated by RP-HPLC, SDS-PAGE, and MALDI-TOF-TOF analyses. A. 44 laevis venom is remarkably simple and consists of phospholipases A2 (71.2%), three45 finger toxins (3FTx; 25.3%), cysteine-rich secretory proteins (CRISP;...

متن کامل

Computational Studies of Snake Venom Toxins

Most snake venom toxins are proteins, and participate to envenomation through a diverse array of bioactivities, such as bleeding, inflammation, and pain, cytotoxic, cardiotoxic or neurotoxic effects. The venom of a single snake species contains hundreds of toxins, and the venoms of the 725 species of venomous snakes represent a large pool of potentially bioactive proteins. Despite considerable ...

متن کامل

Inhibition of Hemorragic Snake Venom Components: Old and New Approaches

Snake venoms are complex toxin mixtures. Viperidae and Crotalidae venoms, which are hemotoxic, are responsible for most of the envenomations around the world. Administration of antivenins aimed at the neutralization of toxins in humans is prone to potential risks. Neutralization of snake venom toxins has been achieved through different approaches: plant extracts have been utilized in etnomedici...

متن کامل

Exploration of immunoglobulin transcriptomes from mice immunized with three-finger toxins and phospholipases A2 from the Central American coral snake, Micrurus nigrocinctus

Snakebite envenomings represent a neglected public health issue in many parts of the rural tropical world. Animal-derived antivenoms have existed for more than a hundred years and are effective in neutralizing snake venom toxins when timely administered. However, the low immunogenicity of many small but potent snake venom toxins represents a challenge for obtaining a balanced immune response ag...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular biology and evolution

دوره 22 4  شماره 

صفحات  -

تاریخ انتشار 2005